

Gill Health in Scottish Farmed Salmon

Microbiome Study

Will J. Barr¹, Kelly J. Stewart¹, Annette S. Boerlage², Umer Z. Ijaz¹, Cindy J. Smith¹

¹ Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, Advanced Research Centre

² Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College (SRUC), Inverness, UK

Longitudinal Analysis of **Gill Mucosal Microbiome** of farmed Atlantic Salmon in Scotland

Aim

To **characterise** the mucosal gill microbiome of farmed Atlantic salmon through the seawater production phase

Why

- The microbiome is thought to influence host health
- The Gill microbiome and possible associations with CGD are currently understudied

Sampling Method

Swabs collected from right side arches 1, 3

Workflow

Bacterial Alpha Diversity: the biodiversity within a given sample

B EVERY MONTH
SO 11% CGD, 74% AGD
116 FISH

C EVERY MONTH
S1 24% CGD, 37% AGD
104 FISH

G EVERY TWO WEEKS
S1 13% CGD, 35% AGD
152 FISH

Evenness: how balanced a community is . Simpson Index.

A EVERY TWO WEEKS
SO 20% CGD, 38% AGD
264 FISH

B EVERY MONTH
SO 11% CGD, 74% AGD
116 FISH

APR 19- FEB 20
C EVERY MONTH
S1 24% CGD, 37% AGD
104 FISH

JAN 19- APR 20
EVERY TWO WEEKS
13% CGD, 35% AGD
152 FISH

Bacterial Beta Diversity: comparing the biodiversity between samples

Plot interpretation

Each dot = microbiome

Closer dots = more

similar

Both **Site** and **Season** are drivers of difference
PERMANOVA
Site - R²= 0.072 P=0.001
Season - R²= 0.099, P=0.001
Evenness Collapse Group R²= 0.08401, P=0.001

Bray-Curtis: Presence absence with Abundance

Site A $- R^2 = 0.20$, P=0.001

Site B $- R^2 = 0.40$, P=0.001

Site $C - R^2 = 0.22$, P = 0.001

Site $G - R^2 = 0.23$, P = 0.001

Key message

We see clustering by season at each site

80%

ASV_2:Pseudoalteromonas

ASV_6:Psychrobacter

ASV_1:Gammaproteobacteria

90%

ASV_2:Pseudoalteromonas

ASV_6:Psychrobacter

Pseudoalteromonas

Heterotrophic, often produce bioactive secondary metabolites

Psychrobacter

Nutrient cycling in cold environments, contributing to carbon and nitrogen cycling.

Two ASVs found in **90**% of Samples Three ASVs found in **80**% of Samples

Key Message

Despite seasonal and geographic differences certain ASVs persist throughout

Take Home Messages

- Differences observed between site and through the seasons
- Despite this we see some taxa consistently across the sample set

Email: 2690657b@student.gla.ac.uk

Will J. Barr¹, Kelly J. Stewart¹, Annette S. Boerlage², Umer Z. Ijaz¹, Cindy J. Smith¹

- ¹ Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, Advanced Research Centre
- ² Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College (SRUC), Inverness, UK